Strain Properties of Nanodimensional Thin Film Systems Based on Ag and Co

Z.M. Makukha¹, Yu.M. Shabelnyk¹, I.M. Pazukha¹, C.J. Panchal²,³, I.Yu. Protosenko¹,⁴

¹ Sumy State University, 2, Rymsky Korsakov Str., 40007 Sumy, Ukraine ¹² M.S. University of Baroda, Vadodara, 390001, Gujarat, India

(Received 06 June 2012; published online 19 August 2012)

The results of research strain deformation properties of thin films Ag, Co and two-layer film systems Ag/Co in the range of deformation \(\Delta \varepsilon = 0 – 1\% \) were presented. The plastic deformation in Co layer caused a similar deformation in the entire film system, even if the strain range of Ag layer is not reached the limits of the transition elastic/plastic deformation.

Keywords: Two-layer film systems, Strain effect, Gauge factor, elastic and plastic deformation.

PACS numbers 60,68.Bs, 72,10.Fk, 73,63.Bd

1. INTRODUCTION

The magnetoresistance of the multilayer or granular film systems based on Ag and Co has been widely studied in the last two decades in correlation with structural, magnetic and magneto-optic properties [1, 2]. However, as shown by the authors of [3, 4], multilayer film systems with spin-dependent electron scattering can be used as ultrasensitive strain sensor. The present paper shows the result of study strain properties of Ag/Co film systems.

2. EXPERIMENT

Thin films Ag, Co and bilayers were prepared by methods of thermal (Ag) end electron-beam (Co) evaporation in vacuum chamber (the base pressure was \(10^{-4} \) Pa). The thickness of the films was measured during deposition by the method of quartz resonator, according to the recommendation of work [5], accurate within \(\pm 10\% \). Researches strain properties during eight cycles “load – unload” were carried out using modern devices of physical experiment automatization. This made it possible to execute computerized of experiment control and results analysis. In detail these automate system described at work [6].

The mean and instantaneous gauge factors were calculated, like at work [7], from the equations:

\[
\gamma_i = \frac{1}{R} \frac{\Delta R}{\Delta \varepsilon_i}
\]

and

\[
\gamma_{il} = \frac{1}{R_i} \frac{\Delta R_i}{\Delta \varepsilon_{il}}
\]

respectively, where \(R \) and \(R_i \) are resistances at strain \(\varepsilon = 0 \) and \(\varepsilon_i = \varepsilon_{il} \) respectively. The value of \(\gamma_i \) was calculated as angular coefficient of dependence \(\Delta R/R \) versus \(\varepsilon_i \) as graphical differentiation of this dependence.

The phase state and crystalline structure were investigated by electron diffraction and electron microscope methods (high resolution transmission electron microscope TEM-125K).

3. RESULTS

Analysis of structural-phase state of Ag and Co thin films and two-layer film systems Ag/Co was carried out to confirm the correctness of the analysis of further research strain properties. A typical diffraction and TEM-images of thin films Ag(20)/S, Co(20)/S and film system Ag(20)/Co(20)/S (S-substrate, the value of thickness is in nm) after condensation are shown in Fig. 1 and 2. The results of diffraction data analysis are presented in Tabl. 1. Ag has fcc structure with the mean lattice parameter \(\pi(\text{fcc-Ag}) = 0,407±0,001 \) nm (Fig. 1a). The value agrees well with the tabulated data \(a_{\text{fcc-Ag}} = 0,408 \) nm [8]. Co has two-phase state in comparison with Ag thin film (see. Fig. 1b). Diffraction rings fromhcp-Co and fcc-Co fixed in the diffusion pattern of Co. The lines of fcc-Co corresponds to as reflections from stacking fault, as well as unfinished phase transition fcc--hcp at condensation of film Co(20)/S. The mean value of fcc-Co is \(\pi(\text{fcc-Co}) = 0,354±0,001 \) nm, that agrees with the tabulated data \(a_{\text{fcc-Co}} = 0,355 \) nm [8].

![Fig. 1 – Diffraction pattern and crystalline structure of thin films Ag(20)/S (a) and Co(20)/S (b) after condensation](image_url)

* cjpanchal_msu@yahoo.com

† protsenko@aph.sumdu.edu.ua
Fig. 2 – Diffraction pattern (a) and crystalline structure (b) of two-layer film systems Ag(20)/Co(20)/S after condensation

The results of diffraction data analysis for film system Ag(20)/Co(20)/S (see Fig. 2, Table 1) shown that sample has two-phase state after condensation. Diffraction rings from both layers fixed at diffraction pattern (see Fig. 2). This makes it possible to conclude that for the systems based on Ag and Co has place identity of layers without formation solid solution and stabilization of a granulated state. This conclusion agrees with results of investigation of diffusion processes by method SIMS at work [8].

Dependences ΔR, R and γ_r versus c_r for thin films Ag, Co and two-layer system Ag/Co are shown at Fig. 3 – 5 respectively. The main characteristic properties of deformation dependences are as follow: the first cycle at dependences for thin films Ag, Co differ from another in consequence of recrystallization processes (partial grains rotations, redistribution crystalline defect, microplastic deformation); strain properties stabilized from the second cycle; the change character of dependence $R(\phi)$ and $\Delta R/R(\phi)$ at $\phi = 0.3 \%$ for Co(70)/S (Fig. 4a) correspond to transition from elastic to plastic deformation. Notice, the elastic deformation has place till $\phi \leq 1 \%$ for Ag (Fig. 3a).

First cycle of deformation dependences for two-layer system differ from another too. Besides, the elastic deformation has short range and dependent on concentration of Co atom, which has a lower limit of elastic deformation in comparison with the Ag film.

During the research of strain deformation properties of two-layer film systems was observed the effect of abnormal increase of instantaneous longitudinal strain deformation coefficient γ_r under the deformation ε (see insert at Fig. 5a). The deformation value, for which maximum is observed, corresponds to transition from elastic to plastic deformation. This effect at dependences γ_r versus ε was observed in previously investigations [10, 11].

<table>
<thead>
<tr>
<th>Film</th>
<th>No</th>
<th>I, a, u</th>
<th>d_{hkl}, nm</th>
<th>hkl</th>
<th>phase</th>
<th>d_{hkl}, nm</th>
<th>d_{a}^0, nm [8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>1</td>
<td>V H</td>
<td>0.235</td>
<td>111</td>
<td>fcc-Ag</td>
<td>0.408</td>
<td>0.407</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>m</td>
<td>0.204</td>
<td>200</td>
<td>fcc-Ag</td>
<td>0.407</td>
<td>0.404</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>m</td>
<td>0.143</td>
<td>220</td>
<td>fcc-Ag</td>
<td>0.408</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>m</td>
<td>0.122</td>
<td>311</td>
<td>fcc-Ag</td>
<td>0.406</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>l</td>
<td>0.117</td>
<td>222</td>
<td>fcc-Ag</td>
<td>0.406</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>l</td>
<td>0.102</td>
<td>400</td>
<td>fcc-Ag</td>
<td>0.407</td>
<td>0.102</td>
</tr>
<tr>
<td>Co</td>
<td>1</td>
<td>H</td>
<td>0.215</td>
<td>100</td>
<td>hcp-Co</td>
<td>0.248</td>
<td>0.216</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>V H</td>
<td>0.204</td>
<td>111</td>
<td>fcc-Co</td>
<td>0.354</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>m</td>
<td>0.192</td>
<td>101</td>
<td>fcc-Co</td>
<td>–</td>
<td>0.191</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>m</td>
<td>0.177</td>
<td>200</td>
<td>fcc-Co</td>
<td>0.354</td>
<td>0.177</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>m</td>
<td>0.125</td>
<td>220</td>
<td>fcc-Co</td>
<td>0.354</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>l</td>
<td>0.106</td>
<td>311</td>
<td>fcc-Co</td>
<td>0.355</td>
<td>0.107</td>
</tr>
<tr>
<td>Ag/Co</td>
<td>1</td>
<td>V H</td>
<td>0.236</td>
<td>111</td>
<td>fcc-Ag</td>
<td>0.407</td>
<td>0.236</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>H</td>
<td>0.218</td>
<td>100</td>
<td>hcp-Co</td>
<td>0.251</td>
<td>0.215</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>m</td>
<td>0.204</td>
<td>200</td>
<td>fcc-Ag</td>
<td>0.408</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>v l</td>
<td>0.190</td>
<td>101</td>
<td>hcp-Co</td>
<td>–</td>
<td>0.191</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>m</td>
<td>0.143</td>
<td>220</td>
<td>fcc-Ag</td>
<td>0.408</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>l</td>
<td>0.123</td>
<td>220</td>
<td>hcp-Co</td>
<td>0.251</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>v l</td>
<td>0.122</td>
<td>311</td>
<td>fcc-Ag</td>
<td>0.406</td>
<td>0.123</td>
</tr>
</tbody>
</table>

H – high, m – medium, l – low.
Fig. 3 – Dependences $\Delta R/R$, R and γ_i vs. ε_i (a) and dependence γ_i vs. ε_i for I deformation cycle (b) for thin film Ag(38)/S. I, VIII – number of deformation cycles “load – unload”

Fig. 4 – Dependences $\Delta R/R$, R and γ_i vs. ε_i (a) and dependence γ_i vs. ε_i for I deformation cycle (b) for thin film Co(70)/S

Fig. 5 – Dependences $\Delta R/R$, R and γ_i vs. ε_i (a) and dependence γ_i vs. ε_i for I deformation cycle (b) for film system Ag(45)/Co(36)/S

To explanation the maximum at dependence γ_i vs. ε_i for two-layer film systems was analyzed the condition of extremum (maximum), which is obtained by simplified equation $\partial \gamma_i / \partial \varepsilon_i = 0$. Analysis indicates that the appearance of a maximum in dependence γ_i vs. ε_i is caused by the nonlinear variation of the resistivity that occurs under corresponding deformation or is the result of structural changes in the film system during the transition from elastic to plastic deformation or other deformation mechanism.

4. CONCLUSION

Dependences $\Delta R/R$, R vs. ε_i for two-layer systems Ag/Co characterized short range of strain deformation, the limits of the transition elastic/plastic deformation for Ag/Co and Co dependence on total thickness.

The appearance of a maximum in dependence γ_i versus ε_i is caused by the transition from elastic to plastic deformation.

This work is done within the framework of scientific and technical agreement between Sumy State University (Sumy, Ukraine) and University of Baroda (Vadodara, India).

REFERENCES