Nonlinear-optical Negative-index Metamaterials: Extraordinary Properties and Applications

A. K. Popov1, I.S. Nefedov2, S.A. Myslivets3, M.I. Shalaev4, V.V. Slabko4

1 University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA
2 Aalto University, SMARTER Center of Excellence, P.O. Box 13000, 00076 Aalto, Finland
3 Institute of Physics of Russian Academy of Sciences, 660036 Krasnoyarsk, Russian Federation
4 Siberian Federal University, 660041 Krasnoyarsk, Russian Federation

(Received 19 May 2013; published online 31 August 2013)

The principles of nanoeengineering of metamaterials which support optical electromagnetic and elastic waves with negative group velocity are described. Extraordinary properties of nonlinear-optical energy transfer between contra-propagating short pulses of electromagnetic and elastic waves are investigated and prospective unique photonic devices are discussed.

Keywords: Nonlinear optical negative-index metamaterials, Backward electromagnetic and elastic waves, Nonlinear energy exchange between ordinary and backward waves, Second harmonic generation and frequency mixing, Photonic devices.

PACS numbers: 78.67.–n, 42.65.Ky, 42.65.Dr, 42.79.Fm, 42.79.Nv

1. INTRODUCTION

Optical negative-index materials (NIMs) form a class of electromagnetic media that promise revolutionary breakthroughs in photonics. The possibilities of such breakthroughs originate from backwardness, the extraordinary property that electromagnetic waves (EMWs) acquire in NIMs. Unlike in ordinary, positive-index materials, the energy flow, S, and the wave vector, k, become counter-directed in NIMs that determine their unique linear and nonlinear optical (NLO) propagation properties. Backward waves (BWs) are referred to as waves with negative group velocity. Usually, NIMs are nanostructured metal-insulator composites with a special design of their building blocks at the nanoscale that enables negative optical magnetism. Metal component imposes strong absorption of optical radiation in NIMs, which presents a major obstacle towards their numerous prospective exciting applications. Extraordinary features of coherent NLO frequency conversion processes in NIMs, which stem from wave-mixing of ordinary and backward electromagnetic waves (BEMWs), and the possibilities to apply them to compensate the outlined losses have been shown in [1-5] (for a review, see [5,6] and references therein). Most remarkable feature is appearance of distributed feedback NLO behavior. It allows sharp, resonance type, increase of the conversion efficiency as function of the product of strength of the input EM field and the slab thickness, which is in strict contrast with the commonly known exponential growth in ordinary PI materials. Essentially different properties of three-wave mixing (TWM) and second harmonic generation (SHG) have been shown [3, 5, 6].

2. RESULTS AND DISCUSSIONS

In this work, novel concepts of NLO photonic materials are proposed, which support negative group velocity of EM or elastic waves and lay outside of current mainstream in fabricating plasmonic-based NIMs. They concern with the materials that support electromagnetic or vibration waves with negative group velocity. Energy flux, S, and wave vector, k, become counter-directed in a media with negative dispersion $\partial \omega / \partial k < 0$, which is seen from the equation $S = \nabla U$, where U is energy density, $\nabla = \text{grad} \alpha(k)$. Such NLO materials enable greatly enhanced coherent NLO energy exchange between ordinary and BWs as applied to SHG, TWM- and four-wave mixing processes. Two different classes of materials which support BWs are proposed and will be described: metamaterials with specially engineered spatial dispersion of the nanoscopic building blocks, such as standing carbon nanotubes [7], and crystals that support optical phonons with negative group velocity [8]. The possibility to employ ordinary, readily available crystals instead of plasmonic NLO NIMs is justified. Plasmonic NIMs are challenging to engineer that requires sophisticated techniques of nanotechnology. We show that extraordinary NLO frequency-conversion propagation processes attributed to NIMs can be mimicked in the proposed fully dielectric materials. We also show that the detrimental effects of strong losses caused by fast optical phonon damping can be eliminated in the short-pulse regime. Comparative analysis is given.

Fig. 1a depicts metamaterial slab that can be viewed as a wave guide formed by a metal plate (bottom) and by air (top) tampered by carbon nanotubes. Fig. 1b shows two modes supported by the metamaterial (waveguide). Frequency f_1 correspond to positive and $2f_1$ – to negative group velocities, both propagate with the same phase velocity. The latter indicates the possibility of phase matching of SHG.

Fig. 2 depicts dispersion of optical phonons $\alpha(k)$, such as in calcite, and phase matching of ordinary, counter-propagating fundamental (ω) Stokes (ω') and backward elastic wave (ω''). Here, S_i are energy fluxes and k_i are wave vectors.
Fig. 3a (solid line) shows quantum conversion efficiency of stimulated Raman scattering (TWM) in the case of contra-propagating phase-matched ordinary Stokes and backward phonon waves. Dashed line shows alternative option of phase-matched co-propagating Stokes and phonon waves, which correspond to standard SRS process. Great enhancement of the efficiency is explicitly seen in the first case. The possibility to tailor of duration and shape of the output pulses is seen.

Fig. 1 – (a) “Nanoforest” made of carbon nanotubes and (b) phase matching of backward SH and ordinary fundamental EM waves propagating along axis x

Fig. 2 – Negative dispersion of optical phonons and phase matching of ordinary fundamental (b), Stokes (c) and backward contra-propagating phonon (d) waves

ACKNOWLEDGMENTS

This work was supported in parts by the Air Force Office of Scientific Research (Contract No FA950-12-1-298), by the National Science Foundation (Grant No ECCS-1028353), by the Academy of Finland and Nokia through the Center-of-Excellence program, by the Russian Federal Program on Science, Education and Innovation (Contract No 14.A18.21.1942), and by the Presidium of the Russian Academy of Sciences (Grant No 24-31).

REFERENCES