Influence of the pyrolizing temperature on textural properties of the templated mesoporous carbon materials

Ignat Maria

“P. Poni” Institute of Macromolecular Chemistry
Iasi, Romania
Overview

• Synthesis procedure (hard template method)
• Characterization:
 – N\textsubscript{2}-sorption
 – Small Angle X-ray Scattering (SAXS)
 – Scanning Electron Microscopy (SEM)
 – Raman spectroscopy
 – IR spectroscopy
• Conclusions
Synthesis procedure - hard template method

I

SC700
SC800
SC900
SC1000

SBA-15

IMPREGNATION
Carbon precursor

POLYMERIZATION
100 °C, 6 h
160 °C, 6 h

SBA-15/poly-glycerol

II

SCx

X=700, 800, 900, 1000 °C
5 h, N₂

PIROLISYS

C700
C800
C900
C1000

SC700
SC800
SC900
SC1000

S700
S800
S900
S1000

Sx
S=silica

III

CARBON REMOVAL

C=C=carbon

SILICA DISSOLUTION

September 20, 2013
Characterization: N$_2$ sorption

- type IV isotherms characterizing mesoporous materials with cylindrical pores
- second step of desorption branch \rightarrow blocked pores
- at high temperatures \rightarrow reduced porosity \rightarrow structural shrinkage
- type IV isotherms characterizing mesoporous materials with slit-like pores
- same isotherm shape → not so big differences in their textural properties
- at high temperature → narrow and uniform pore size distribution, no shrinkage
Characterization: N\textsubscript{2} sorption

- type IV isotherms characterizing mesoporous materials with cylindrical pores
- capillary condensation step moves to lower P/P\textsubscript{0} \rightarrow decrease of pore size
- higher pirolysing temperature \rightarrow smaller pores \rightarrow structural shrinkage
Characterization: N\textsubscript{2} sorption results

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET}, m2 g-1</th>
<th>V_{tot}, cc g-1</th>
<th>S_{mic}, m2 g-1</th>
<th>V_{mic}, cc g-1</th>
<th>d_p, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBA-15</td>
<td>728</td>
<td>1.07</td>
<td>196</td>
<td>0.079</td>
<td>9.3</td>
</tr>
<tr>
<td>S700</td>
<td>430</td>
<td>0.66</td>
<td>56</td>
<td>0.019</td>
<td>7.7</td>
</tr>
<tr>
<td>S800</td>
<td>354</td>
<td>0.55</td>
<td>34</td>
<td>0.011</td>
<td>7.2</td>
</tr>
<tr>
<td>S900</td>
<td>353</td>
<td>0.54</td>
<td>30</td>
<td>0.008</td>
<td>6.3; 7.2</td>
</tr>
<tr>
<td>S1000</td>
<td>326</td>
<td>0.46</td>
<td>28</td>
<td>0.007</td>
<td>2.5; 3.8</td>
</tr>
<tr>
<td>SC700</td>
<td>314</td>
<td>0.38</td>
<td>48</td>
<td>0.018</td>
<td>3.9; 6.6</td>
</tr>
<tr>
<td>SC800</td>
<td>228</td>
<td>0.28</td>
<td>20</td>
<td>0.007</td>
<td>3; 3.6; 5.6</td>
</tr>
<tr>
<td>SC900</td>
<td>142</td>
<td>0.17</td>
<td>0</td>
<td>0</td>
<td>3.6; 5.6</td>
</tr>
<tr>
<td>SC1000</td>
<td>29</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>C700</td>
<td>1128</td>
<td>1.22</td>
<td>58</td>
<td>0.018</td>
<td>3.9; 5.0</td>
</tr>
<tr>
<td>C800</td>
<td>1158</td>
<td>1.33</td>
<td>78</td>
<td>0.025</td>
<td>4.2; 5.0</td>
</tr>
<tr>
<td>C900</td>
<td>1221</td>
<td>1.26</td>
<td>85</td>
<td>0.030</td>
<td>3.9</td>
</tr>
<tr>
<td>C1000</td>
<td>1398</td>
<td>1.25</td>
<td>97</td>
<td>0.035</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Characterization: SAXS

- three well resolved peaks → p6mm Hexagonal symmetry
- the (100) peak shifts to higher 2θ values → decrease of unit cell parameter and interplanar distance → decrease of pore size → confirmation of structural shrinkage
Characterization: SAXS

- not so well resolved peaks → only the first two could be distinguished
- the (100) peak shifting is not so large as in the case of composites → almost no change of unit cell parameter and interplanar distance → no pore size changing → no structural shrinkage
Characterization: SAXS

- three well resolved peaks → p6mm Hexagonal symmetry
- the (100) peak shifts to higher 2Θ values → decrease of unit cell parameter and interplanar distance → decrease of pore size → confirmation of structural shrinkage

September 20, 2013
Characterization: SEM

September 20, 2013
Characterization:

RAMAN

IR

September 20, 2013
Conclusions

- The influence of the pyrolizing temperature on the textural properties of mesoporous carbon has been successfully demonstrated.

- It has been shown that the silica shrinkage plays an important role in their synthesis.

- Textural properties of the templated carbon material could be fine tuned by controlling synthesis conditions with regard to the choice of pyrolizing temperature.

Future work: applications as filtration systems in dialysis as adsorbents in haemoperfution.
Acknowledgements

Popovici Evelini – “Al.I. Cuza” University, Iasi, Romania
Cool Pegie – University of Antwerp, Belgium
Harabagiu Valeria – Institute of Macromolecular Chemistry, Iasi, Romania

Romanian National Funding:

Postdoctoral Research Project PN-II-RU-PD-2012-3-0357
Thank you for your attention!